翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

hom functor : ウィキペディア英語版
hom functor
In mathematics, specifically in category theory, hom-sets, i.e. sets of morphisms between objects, give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.
==Formal definition==
Let ''C'' be a locally small category (i.e. a category for which hom-classes are actually sets and not proper classes).
For all objects ''A'' and ''B'' in ''C'' we define two functors to the category of sets as follows:
\pagecolor g \mapsto f\circ g for each ''g'' in Hom(''A'', ''X'').
|This is a contravariant functor given by:
*Hom(–,''B'') maps each object ''X'' in ''C'' to the set of morphisms, Hom(''X'', ''B'')
*Hom(–,''B'') maps each morphism ''h'' : ''X'' → ''Y'' to the function
*: Hom(''h'', ''B'') : Hom(''Y'', ''B'') → Hom(''X'', ''B'') given by
*: \definecolor\pagecolor g \mapsto g\circ h for each ''g'' in Hom(''Y'', ''B'').
|}
The functor Hom(–,''B'') is also called the ''functor of points'' of the object ''B''.
Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms.
The pair of functors Hom(''A'',–) and Hom(–,''B'') are related in a natural manner. For any pair of morphisms ''f'' : ''B'' → ''B''′ and ''h'' : ''A''′ → ''A'' the following diagram commutes:
Both paths send ''g'' : ''A'' → ''B'' to ''f'' ∘ ''g'' ∘ ''h''.
The commutativity of the above diagram implies that Hom(–,–) is a bifunctor from ''C'' × ''C'' to Set which is contravariant in the first argument and covariant in the second. Equivalently, we may say that Hom(–,–) is a covariant bifunctor
: Hom(–,–) : ''C''op × ''C'' → Set
where ''C''op is the opposite category to ''C''. The notation HomC(–,–) is sometimes used for Hom(–,–) in order to emphasize the category forming the domain.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「hom functor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.